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Abstract

Photoplethysmography (PPG) is widely used in wear-
able health monitoring but remains highly susceptible to
motion artifacts, which can degrade signal quality. Tra-
ditional filtering techniques often struggle under dynamic
conditions, resulting in inaccurate physiological measure-
ments. This study introduces a novel cluster-based fil-
tering method that leverages accelerometer data to miti-
gate motion artifacts in PPG signals. Data were collected
from 50 patients using chest bands which recorded three
PPG channels and tri-axial accelerometer data. Motion
artifacts were classified into three clusters using k-means
clustering on statistical features, enabling context-aware
wavelet-based filtering. The proposed method significantly
improved signal quality, reducing noise energy by 30.90 dB
while preserving physiological information. Clustering
performance was validated with a average Silhouette In-
dex of 0.8987, confirming robust segmentation. Compar-
isons with second order Butterworth filter and Daubechies
4 wavelet filters demonstrated superior artifact suppres-
sion without distorting PPG morphology. This adaptive
approach enhances preprocessing for continuous health
monitoring and improves the reliability of wearable PPG-
based applications.

1. Introduction

Photoplethysmography (PPG) is a non-invasive, cost-
effective optical technique commonly employed in wear-
able devices to monitor key physiological parameters such
as heart rate (HR), oxygen saturation (SpO2), and blood
pressure (BP) [1]. It functions by emitting light into the
skin and measuring variations in absorption caused by
blood volume changes [2], providing valuable insights into
cardiovascular health [3]. Due to its affordability, ease of

use, and capability for continuous monitoring, PPG has be-
come a standard feature in both consumer fitness trackers
and clinical-grade devices [4].

Despite its widespread use, PPG is highly vulnerable to
motion artifacts and other noises, especially during phys-
ical activity [5]. These artifacts can distort the signal and
mask underlying information, presenting a major obstacle
to reliable health monitoring in real-world conditions [6].

Conventional filtering methods, including Butterworth
filters and wavelet-based approaches, perform adequately
in controlled settings but often fail under dynamic condi-
tions due to fixed parameters and limited adaptability [7].
Additionally, many of these techniques overlook contex-
tual data from sensors such as accelerometers, which could
be leveraged to enable more adaptive filtering [8].

This study introduces a cluster-based filtering frame-
work that utilizes accelerometer data to adaptively respond
to motion context. By incorporating motion-aware wavelet
filtering guided by cluster-specific information [9], this
adaptive strategy represents a promising approach for ef-
fectively suppressing artifacts while preserving the mor-
phology of the PPG signal.

2. Materials and Methods

The dataset comprised recordings from 50 participants
wearing Polar Verity Sense wristbands (Polar Electro Oy,
Finland), each equipped with three PPG channels and a tri-
axial accelerometer. The cohort consisted of 60% women;
50% reported active lifestyles, and 40% were under car-
diovascular medication, including beta-blockers or statins.
Participants wore the device on the forearm for 24 h while
engaging in their usual daily activities.

PPG signals were sampled at 55 Hz. Accelerometer data
were resampled to the same frequency, and total acceler-
ation was calculated as the Euclidean norm of the three
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axes. Each 24 h recording was segmented into 10-second
windows, and seven statistical features were extracted per
window: mean, standard deviation, maximum intensity,
energy, skewness, kurtosis, and entropy. These features
are commonly used in human activity recognition based
on tri-axial accelerometry [10]. Outliers were removed us-
ing the interquartile range (IQR) method, and Min-Max
normalization was applied.

Feature selection was guided by a correlation matrix to
reduce redundancy. A custom scoring function was used
to assess clustering performance, incorporating the Silhou-
ette Mean (SM), Davies–Bouldin Index (DBI), and Dunn
Index (DI), while penalizing highly correlated features:
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Standard deviation and skewness emerged as the opti-
mal pair, achieving the highest score, and were selected
for clustering; the remaining features were discarded. Us-
ing k-means clustering with k = 3, three motion-related
clusters were identified, each corresponding to a charac-
teristic level of artifact contamination. These clusters were
then mapped to the synchronized PPG segments.

Cluster-based filtering was implemented using a 5-level
Discrete Wavelet Transform (DWT) with the Symlet 4
wavelet. High-frequency noise and abrupt fluctuations
were captured at lower decomposition levels, while base-
line drift appeared at higher levels.

Wavelet coefficients were selectively suppressed based
on the assigned motion cluster: (i) in the first cluster, A5

and D1 were zeroed to eliminate baseline drift and high-
frequency noise while preserving the core pulsatile signal;
(ii) in the second cluster, A5, D1, and D3 were suppressed
to further reduce motion artifacts while retaining the main
PPG band (0.5–3 Hz); (iii) in the third cluster, A5, D1, D2,
and D3 were removed to maximize suppression of noise
and drift, preserving key components in D4 and D5.

Filtering was applied independently to each segment to
prevent variable motion conditions. Segments were re-
constructed using inverse DWT and combined using 30%
overlapping windows to minimize boundary artifacts.

The proposed method was compared against a second-
order Butterworth bandpass filter (0.5–3 Hz) and a 5-
level DWT using the Daubechies 4 wavelet. Performance
was evaluated using signal-to-noise ratio (SNR), com-
puted with MATLAB’s built-in function to quantify signal
preservation and noise reduction.

3. Results

Clustering performance was evaluated across 10 ses-
sions per recording using the selected feature pair (stan-
dard deviation and skewness). Results confirmed that this
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Figure 1: Example of cluster-based segmentation of a
PPG signal. (a) The acceleration norm is classified into
three motion-related clusters using reference centroids. (b)
These cluster labels are mapped onto the corresponding
PPG signal, illustrating segments with different levels of
motion-induced noise.

combination yielded compact, well-separated clusters with
high internal consistency. Three standard clustering met-
rics were employed to assess performance. The average
Silhouette Index was 0.898±0.012, indicating strong intra-
cluster cohesion. The mean Davies–Bouldin Index was
0.003 ± 0.0002, suggesting excellent inter-cluster separa-
tion. The mean Dunn Index was 0.442± 0.031, reflecting
well-defined and tight clusters. The low standard devia-
tions across all metrics demonstrate high repeatability and
robustness across sessions.

An example of cluster-based segmentation is shown
in Fig. 1, where the acceleration norm is clustered and
mapped onto the corresponding PPG signal.

The proposed filtering method significantly improved
PPG signal quality. As illustrated in Fig. 2, the cluster-
based filter effectively suppresses baseline drift and high-
frequency noise while visually preserving the morphology
of the PPG waveform. Moreover, Figure 3 compares the
proposed method with two baseline approaches: Butter-
worth band-pass filtering (0.5–3 Hz) and wavelet filtering
using Daubechies 4. The clustering-based filter produced
cleaner outputs with better retention of PPG morphology
compared to both alternatives.

Energy-based analysis validated the method’s perfor-
mance, and the proposed filter achieved very good noise
reduction (30.90 dB) while preserving signal integrity
(Fig. 4). Butterworth filtering provided higher attenuation
(34.88 dB) at the cost of waveform distortion. Wavelet
filtering better preserved signal shape but achieved poorer
noise reduction (22.58 dB), leaving residual artifacts.
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Figure 2: Comparison of original PPG signal affected by
varying levels of noise (black) and the filtered signal (red)
using the proposed clustering-based method. Motion and
baseline artifacts are effectively removed, while the under-
lying morphology of the PPG signal is preserved.

4. Discussion

In wearable health monitoring systems, PPG signal pre-
processing must strike a balance between effective noise
suppression and preservation of waveform integrity. Tra-
ditional methods, such as Butterworth filtering and wavelet
denoising, often exhibit limitations—Butterworth filters
can introduce phase distortion and attenuate physiologi-
cally relevant features, while wavelet-based methods typ-
ically rely on fixed thresholds that may fail to eliminate
high-frequency noise and motion artifacts [11, 12].

The proposed filtering approach addresses these short-
comings by adaptively suppressing noise based on motion-
derived features. In contrast to conventional filters, it se-
lectively targets noisy segments while preserving cleaner
signal regions, thereby maintaining the morphological fi-
delity of the PPG waveform. Visual analysis demonstrates
improved signal clarity, while quantitative evaluation con-
firms higher signal energy retention and superior noise at-
tenuation. Moreover, clustering performance was consis-
tent across sessions, indicating robustness and reliability in
real-world, motion-rich wearable scenarios.

Unlike previous approaches relying on PPG-based clus-
tering to discard noisy segments entirely [13], our method
uses accelerometer features to guide the filtering process.
This enables artifact suppression without removing entire
portions of the PPG signal, preserving more usable data.

Nevertheless, the approach has limitations. It may be
sensitive to the choice of clustering parameters and the ini-
tialization of centroid positions [14], which could impact
filtering consistency under different conditions.

Future work should include a more detailed assessment
of computational efficiency and investigate how the num-
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Figure 3: Comparison of filtering methods on a represen-
tative PPG segment. (a) Butterworth band-pass filter (0.5–
3 Hz) vs. clustering-based filtering. (b) Wavelet filtering
(Daubechies 4) vs. clustering-based filtering.

ber of clusters and window size influence performance.
Testing on more diverse and larger-scale PPG datasets will
also be essential to evaluate the method’s robustness and
generalizability.

5. Conclusions

This study proposed a cluster-based filtering method
that uses accelerometer data to adaptively reduce motion
artifacts in PPG signals. By adjusting filtering based on
motion intensity, the approach preserves signal morphol-
ogy while improving noise suppression. Results show su-
perior performance over traditional filters, highlighting its
potential for reliable wearable health monitoring.
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Figure 4: Average energy of signal and noise components
before and after filtering. (a) Proposed clustering-based
filter achieves substantial noise suppression with minimal
signal loss. (b) Butterworth filter attenuates both noise and
desired signal. (c) Daubechies 4 wavelet filter preserves
more signal content but is less effective in noise reduction.
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